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ABSTRACT

Adaptive histogram equalization is a contrast enhancement technique in which each pixel is remapped to an
intensity proportional to its rank among surrounding pixels in a selected neighborhood. We present work in which
adaptive histogram equalization is performed on the codebook of a tree-structured vector quantizer so that encoding
with the resulting codebook performs both compression and contrast enhancement. The algorithm was tested on
magnetic resonance brain scans from different subjects and the resulting images were significantly contrast enhanced.

1. INTRODUCTION

Histogram equalization refers to a set of contrast enhancement techniques which attempt to "spread out"
the intensity levels occurring in an image over the full available range.1 Histogram equalization is a competitor of
interactive intensity windowing, which is the established contrast enhancement technique for medical images. In
global histogram equalization, one calculates the intensity histogram for the entire image and then remaps each
pixel's intensity proportional to its rank among all the pixel intensities. In adaptive histogram equalization (AHE),
the histogram is calculated only for pixels in a context region, usually a square, and the remapping is done for
the center pixel of the square. This can be called "pointwise" histogram equalization because, for each point in
the image, one calculates the histogram for the square context region centered on that point. Because this is
very computationally intensive, the bilinear interpolative version is an alternative that lowers the computational
complexity.2 It calculates the histogram for only a set of non-overlapping context regions that cover the image and
the reniapping of pixel intensity values is then exact for only the small number of pixels that are at the centers of
these context regions. For all other pixels, a bilinear interpolation from the nearest context region centers determines
the appropriate remapping function.

With the bilinear interpolative version of AHE, the remapping function for a given pixel of intensity i at
location (, y) is determined from the nearest 4 context regions as shown in figure 1. Ifm+_ denotes the mapping at
the grid pixel (x+, y.) to the upper right of (x, y), and similar subscripts are used for the othersurrounding context
regions, then the interpolated AHE result is given by2:

in(i) = a[bm(i) + (1 — b)m_(i)J + [1 — u]{bm_(i) + (1 — b)m__(i)], (1)

here

b= . (2)y+—y-
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Figure 1: Bilinear interpolative AHE

Pixels in the border regions of the image are handled separately, by using a linear interpolation from the two nearest
context region centers or, in the corners, using only a single remapping function. Typically for a 256 x 256 pixel
image, there are 16 context regions of size 64 x 64.

2. TREE-STRUCTURED VECTOR QUANTIZATION

Vector quantization3'4 (VQ) is a lossy compression technique that has become popular in the last decade for
data compression. It works by encoding input vectors to one of a number of pre-selected vectors called codewords.
From rate-distortion theory, better coding performance can be achieved by coding vectors rather than scalars. Tree-
structured vector quantization5 uses a tree structure to lower the search complexity of a VQ encoder at the cost
of a slight decrease in performance. Figure 2 shows schematically how this works. The encoder takes the image
to be compressed and blocks it into vectors. Each block X is then encoded by a binary tree until it reaches a
teriiiinal node (leaf), , of the tree, and the index i of the path through the tree is output. These indices are stored.
Decompressing with a VQ is rapid since it is a simple table lookup operation. The decoder reads in an index i and
looks at its copy of the tree to retrieve , the reconstruction of X,.4

Tree-structured vector quantization and histogram equalization can both be applied to one image by performing
them sequentially, but this requires extra time. Instead of performing the decoding and equalizing operations
sequentially, one can perform them simultaneously by equalizing the decoder's codebook off-line.6 This way, the
decoder's reconstruction of the image and the histogram equalization would be performed in the same time required
by the decompression alone. To combine VQ with global histogram equalization, one can construct a global histogram
containmg all pixels that composed the training images, and each pixel of each codeword can be equalized using this
global histogram. Thus each pixel of each terminal node will be remapped to a new intensity that is proportional
to its rank in the global histogram. These new codewords can be stored at the decoder, along with the original
codewords. The encoder is unchanged. The decoder takes the same set of indices and puts them through the
same tree, but upon reaching a terminal node of the tree, the decoder now has the option of outputting either the
compressed reproduction or the compressed and histograni equalized reproduction. The radiologist thus has the
option of looking at either the equalized or the unequalized series of compressed scans and either way requires the
sanie amount of time to reconstruct the image.

3. ADAPTIVE HISTOGRAM EQUALIZATION AND VQ

Global histogram equalization. while providing some improvement in image quality, does not provide as much
detail in the resulting image as does adaptive histogram equalization. Unfortunately the simultaneous combination
of VQ and AITE is not straightforward. AHE remaps a pixel's intensity using a histogram local to that pixel, so it
is not sufficient to know the pixel's intensity to determine the appropriate remapping function. One must also know
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the pixel's location in the image. This cannot be simply applied to VQ, because although one knows the intensity
of any pixel in a codeword, one does not know its "location." Since the codewords represent centroids of clusters
of training sequence vectors, the concept of a codeword's "location" within the training images is vague, since the
codeword is likely not to exist in any of the images.

The algorithm for combining VQ with AHE is an extension of that used for combining VQ with global
histogram equalization.6 The training images are each divided into 16 context regions as shown in figure 1. The
pixels from the corresponding regions of the training images are pooled to form 16 different intensity histograms.
The codewords are equalized using each of the 16 different histograms, and the resulting equalized versions of the
codewords are stored at the decoder along with the original codewords. The system is diagramed in figure 3. To
produce an equalized decompressed image, the decoder makes use of the same set of codeword indices from the
encoder, and follows the same paths through the tree. Since the image input to the encoder is scanned in raster
order, the spatial location of each vector is known to the decoder without any additional information being required.
Knowing the location allows the decoder to generate the coefficients a and b from equation 2, and select the 4 versions
of the codeword corresponding to that location. The appropriate linear combination is then formed.

To demonstrate the new technique of combining the compression and histogram equalization steps, an unbal-
anced tree was grown to an average depth of 2 bits per pixel (bpp) on a training sequence of 10 magnetic resonance
(MR) mid-sagit.tal brain scans of 10 different subjects. The training images ofsize 256 x 256 were blocked into 2 x 2
vectors. The tree was pruned7 back to 1.7 bpp and used to encode a test image not in the training set. Figure 4 shows
the original test image. The 10 training images were divided into 16 square context regions as shown in figure 1.
The pixels from all 10 images from each context region were formed into 16 histograms. Those pixels corresponding
to the black background of the training images were excluded from the histograms by a semi-automatic algorithm.
Inclusion of those background pixels would cause the gray and white pixels of the head regions to rank much higher
in the histogram, and thus to remap much brighter. This would correspond to enhancing the contrast between the
head and the background, a contrast with which we are not concerned. Exclusion of the background pixels instead
causes the enhancement to focus on the contrast between various structures within the head. The terminal node
codewords were equalized according to the 16 different histograms, and the versions are stored at the decoder. For
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Figure 2: Schema of a vector quantizer
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Figure 3: A vector quantizer with both equalized and unequalizedcodewords
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any index, the decoder then has the choice of outputting either the regular codeword or a linear combination of
the spatially appropriate equalized codewords. Figure 5 shows the regular compressed and equalized compressed
images. The image quality of the equalized compressed image is very high, and its contrast is enhanced, e.g., the
invaginations of the cortex are more obvious, and the vertebrae are more clearly differentiated from the interstitial
spaces between them.

With this type ofscan, as with many other medical scans in which the imaged portion ofthe body is displayed
on a dark background, a tremendous benefit is derived from removing the background pixels from the histogram
prior to the equalization. These operations of decompression, background removal, formation of the histograms,
and equalization using those histograms, could be performed sequentially. Sequential operations allow one to use
the true histogram of the decoded image, instead of the histogram of the training images. The advantage of our
method is that the operations of background removal, histogram formation, and equalization are done off-line using
the training sequence at the time the VQ is designed. Subsequent decoding is limited to the decompression step (a
table look-up) and forming a linear combination of the equalized codewords. The disadvantage of this algorithm is
that the decoder is required to store 16 versions of each terminal node of the tree. Thus there is a substantial time
savings at the expense of a significant increase in storage space required at the decoder.

The algorithm requires a certain degree of stationarity in both intensity and spatial coordinates. If the test
images are significantly different from the training images, the equalization based on the training images and applied
off-line to the codewords will be inappropriate for the test images. This algorithm is best suited to images that
exhibit such stationarity. An example are images generated from medical applications in which certain regions of the
body are imaged in standard positions by a given modality such that the resulting images have sufficient similarity
across subjects. By comparison, the global histogram equalization algorithm requires some stationarity in intensity
but not in spatial coordinates, as the pixels from the entire image are pooled for the histogram. That algorithm
would therefore be more suitable when the imaged portion of the body might be significantly displaced spatially in
the image from one subject to the next. Alternatively if the image could be spatially registered to a standard, then
the AIIE version of the algorithm could be used.

4. CONCLUSION

\Ve have shown that adaptive histogram equalization using the histograms of the training images can be
performed off-line on a vector quantizer's codebook. When an encoded image is decoded in real time using linear
combinations of the equalized codewords of the same tree, the resulting decoded picture has significantly enhanced
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Figure 4: Original image
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contrast . The enhancement is very similar to what would be produced by decoding using the regular tree, followed
by an adaptive equalization of the decoded image using its own histogram. The time required for this post-processing
step is thus substantially reduced.
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Figure 5: Compressed images: regular and equalized at 1.78 bpp
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