COLOR

The figures in this handout are taken from Foundations of Vision by Brian Wandell, Color in Electronic Displays by Heino Widdel and David Post, Digital Image Processing by William Pratt, and Fundamentals of Digital Image Processing by Anil Jain.

4.10 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and adjusts the intensities of the three primary lights to match the appearance of the test light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to the observer. After Judd and Wyszecki, 1975.

FIGURE 3.2-2. Spectral energy distributions.
(A) Test light

Primary lights

$+$

t matches \mathbf{e}
(B)

(C)

$$
\mathbf{t}+\mathbf{t}^{\prime} \text { matches } \mathbf{e}+\mathbf{e}^{\prime}
$$

4.12 THE COLOR-MATCHING EXPERIMENT SATISFIES THE PRINCIPLE OF SUPERPOSITION. In parts (A) and (B), test lights are matched by a mixture of three primary lights. In part (C) the sum of the test lights is matched by the additive mixture of the primaries, demonstrating superposition.

Algebraic formulation of color

Suppose we have some arbitrary light $C(\lambda)$. We consider that λ is sampled e.g., $380-780 \mathrm{~nm}$ sampled at 2 nm intervals, so we get 201 numbers, or $400-700 \mathrm{~nm}$ sampled at 10 nm intervals, so 31 numbers. We can represent C as

$$
C=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

So we can write this as:

$$
c=c_{1} e_{1}+c_{2} e_{2}+\ldots+c_{n} e_{n}
$$

where the e_{i} are the spectral (prism) colors:

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \quad e_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \cdots \quad e_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Now we have some primaries. Call them P_{1}, P_{2}, P_{3}. Each of these is itself a column vector of length n. With these primaries, we use the color matching setup to match the spectral colors.

$$
m_{1 i} P_{1}+m_{2 i} P_{2}+m_{3 i} P_{3} \leftrightarrow e_{i}
$$

The symbol \leftrightarrow means "visual match." It is supposed to be used for two column vectors, and means that the two spectral distributions over wavelengths of visible light look the same to the human visual system. This equation can be written also as

$$
\left[\begin{array}{ccc}
\mid & \mid & \mid \\
P_{1} & P_{2} & P_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{c}
m_{1 i} \\
m_{2 i} \\
m_{3 i}
\end{array}\right] \leftrightarrow\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

or we can write it in shorthand as $P M_{i} \leftrightarrow e_{i}$
where P is the $n \times 3$ matrix made up of the 3 column vectors of the primaries:

$$
P=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
P_{1} & P_{2} & P_{3} \\
\mid & \mid & \mid
\end{array}\right]
$$

After this matching is done for all spectral colors, you get

$$
P M \leftrightarrow I
$$

This last equation is something of an abuse of the \leftrightarrow notation. When the symbol is used for matrices, we mean that the jth column on the left is a visual match for the jth column on the right. $P M \leftrightarrow I$ is shorthand for:

$$
\left[\begin{array}{ccc}
\mid & \mid & \mid \\
P_{1} & P_{2} & P_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{cccc}
m_{11} & & m_{1 i} & \\
m_{21} & \ldots & m_{2 i} & \ldots \\
m_{31} & & m_{3 i} &
\end{array}\right] \leftrightarrow\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]
$$

The COLOR MATCHING FUNCTIONS are the rows of the color matching system matrix M :

4.13 THE COLORMATCHING FUNCTIONS ARE THE ROWS OF THE COLORMATCHING SYSTEM MATRIX.
The functions measured by Stiles and Burch (1959) using a 10 -degree bipartite field and primary lights at the wavelengths 645.2 nm , 525.3 nm , and 444.4 nm with unit radiant power are shown. The three functions in this figure are called $\bar{r}_{10}(\lambda)$, $\bar{g}_{10}(\lambda)$, and $\bar{b}_{10}(\lambda)$.

Then for any color

$$
c=c_{1} e_{1}+c_{2} e_{2}+\ldots+c_{n} e_{n}
$$

using the axioms of "homogeneity" and additivity, we have

$$
P M c \leftrightarrow c
$$

If we denote $M c=m_{c}$ then we have

$$
P m_{c} \leftrightarrow c
$$

This means that with three primaries, we can match any color.
Why should 3 primaries let you match any color? Because there are 3 basic types of cones in the retina. They have different absorption characteristics as a function of wavelength:

Typical spectral absorption curves of pigments of the retina

So one can write the neural response as $r=R c$ where this is shorthand for

$$
\begin{aligned}
& \left.\qquad \begin{array}{c}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]= \\
& \left.\qquad \begin{array}{lll}
- & R_{1} & - \\
- & R_{2} & - \\
- & R_{3} & -
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \\
& \qquad \begin{array}{l}
\text { spectral }
\end{array} \\
& \text { neural color signal } \\
& \text { response } \\
& \begin{array}{l}
\text { sensitivity } \\
\text { of } i \text { th cone type }
\end{array}
\end{aligned}
$$

Two colors c_{A} and c_{B} match if

$$
\begin{gathered}
r=R c_{A}=R c_{B} \Leftrightarrow c_{A} \leftrightarrow c_{B} \\
R\left(c_{A}-c_{B}\right)=0
\end{gathered}
$$

or $c_{A}-c_{B}$ is in the nullspace of R then colors match.

$$
c \leftrightarrow\left[\begin{array}{ccc}
\mid & \mid & \mid \\
P_{1} & P_{2} & P_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
m_{c 1} \\
m_{c 2} \\
m_{c 3}
\end{array}\right]=P m_{c}
$$

Since c matches $P m_{c}$, we have

$$
R\left(c-P m_{c}\right)=0 \quad \Rightarrow R c=R P m_{c} \quad \Rightarrow m_{c}=(R P)^{-1} R c
$$

m_{c} is 3×1
$(R P)^{-1}$ is 3×3
R is $3 \times n$
c is $n \times 1$
Apply this to spectral color e_{i}
Since $P M_{i} \leftrightarrow e_{i}$ therefore $M_{i}=(R P)^{-1} R e_{i}$
Do this for all the e_{i} and we get

$$
M=(R P)^{-1} R I=(R P)^{-1} R
$$

$(R P)^{-1}$ is a 3×3 linear transformation.
So this means that the color matching functions are within a linear transformation of our receptor responses.

Matching a color on our monitor:

We see some color c and wish to reproduce this on our monitor. The neural repsonse that we wish to replicate is $r=R c$. Let

$$
D=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
D_{1} & D_{2} & D_{3} \\
\mid & \mid & \mid
\end{array}\right]
$$

be the spectral power distribution of the phosphors of our display.

$$
g=\left[g_{1} g_{2} g_{3}\right]^{t}
$$

are the gun intensities. Then the neural response is

$$
r=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{lll}
- & R_{1} & - \\
- & R_{2} & - \\
- & R_{3} & -
\end{array}\right]\left[\begin{array}{ccc}
\mid & \mid & \mid \\
D_{1} & D_{2} & D_{3} \\
\mid & \mid & \mid
\end{array}\right] g
$$

We choose g to match that light:

$$
\begin{gathered}
R D g=R c \\
g=(R D)^{-1} R c \\
0 \leq g \leq M a x
\end{gathered}
$$

constrains the colors that you can actually match.

FIGURE 3.3-2. Color space for typical red, green and blue primaries.

FIGURE 3.3-3. Chromaticity diagram for typical red, green and blue primaries.

FIGURE 3.5-5. Chromaticity diagram for CIE $X Y Z$ primary system.

(b) u-v chromaticity diagram

FIGURE 3.7-2. MacAdam's ellipses of just noticeable color differences in $X Y Z$ and UVW coordinate systems (39). Axes of ellipses are 10 times actual length.

(a) $x-y$ chiomaticity diagram

