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Abstract—We study the use of linear codes for network com-
puting in single-receiver networks with various classes oftarget
functions of the source messages. Such classes include reducible,
injective, and semi-injective target functions. Computing capacity
bounds are given with respect to these target function classes
for network codes that use routing, linear coding, or nonlinear
coding.

I. I NTRODUCTION

Network codingconcerns networks where each receiver de-
mands a subset of messages generated by the source nodes and
the objective is to satisfy the receiver demands at the maximum
possible throughput rate. Accordingly, research efforts have
studied coding gains over routing [1], [9], [10], whether linear
codes are sufficient to achieve the capacity [6], [7], [11], [13],
and cut-set upper bounds on the capacity and the tightness of
such bounds [9], [10], [19].

Network computing, on the other hand, considers a more
general problem in which each receiver node demands a target
function of the source messages [3], [8], [12], [14], [16], [18].
Most problems in network coding are applicable to network
computing as well. Network computing problems arise in
applications such as sensor networks and vehicular networks.

In [3], a network computing model was proposed where
the network is modeled by a directed, acyclic graph with
independent, noiseless links. The sources generate independent
messages and a single receiver node computes a target function
f of these messages. The objective is to characterize the
maximum rate of computation, that is, the maximum number
of times f can be computed per network usage. Each node
in the network sends out symbols on its out-edges which
are arbitrary, but fixed, functions of the symbols received
on its in-edges and any messages generated at the node. In
linear network computing, this encoding is restricted to linear
operations. Existing techniques for computing in networksuse
routing, where the codeword sent out by a node consists of
symbols either received by that node, or generated by the node
if it is a source (e.g. [15]).

In network coding, it is known that linear codes are suf-
ficient to achieve the coding capacity for multicast networks
[1], but they are not sufficient in general to achieve the coding
capacity for non-multicast networks [6]. In network comput-
ing, it is known that when multiple receiver nodes demand
a scalar linear target function of the source messages, linear
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network codes may not be sufficient in general for solvability
[17]. However, it is known that for single-receiver networks,
linear coding is sufficient for solvability when computing a
scalar linear target function [4], [16]. Analogous to the coding
capacity for network coding, the notion of computing capacity
was defined for network computing in [8] and is the supremum
of achievable rates of computing the network’s target function.

One fundamental objective in the present paper is to under-
stand the performance of linear network codes for computing
different types of target functions. Specifically, we compare
the linear computing capacity with that of the (nonlinear)
computing capacity and the routing computing capacity for
various different classes of target functions in single-receiver
networks. Such classes include reducible, injective, and semi-
injective functions. Informally, a target function is semi-
injective if it uniquely maps at least one of its inputs, and
a target function is reducible if it can be computed using a
linear transformation followed by a function whose domain
has a reduced dimension. Computing capacity bounds and
achievability are given with respect to the target function
classes studied for network codes that use routing, linear
coding, or nonlinear coding.

Our specific contributions will be summarized next.

A. Contributions

In Section III, we study the computing capacity gain of
using linear coding over routing, and nonlinear coding over
linear coding. In particular, we study various classes of target
functions, including injective, semi-injective, reducible, and
linear. The relationships between these classes is illustrated
in Figure 1. We show that if a target function is not reducible,
then the linear computing capacity and routing computing
capacity are equal whenever the source alphabet is a finite field
(Theorem III.4); the same result also holds for semi-injective
target functions over rings. We also show that whenever a
target function is injective, routing obtains the full computing
capacity of a network (Theorem III.5), although whenever a
target function is neither reducible nor injective, there exists
a network such that the computing capacity is larger than
the linear computing capacity (Theorem III.7). Thus for non-
injective target functions that are not reducible, any computing
capacity gain of using coding over routing must be obtained
through nonlinear coding. This result is tight in the sense that
if a target function is reducible, then there always exists a
network where the linear computing capacity is larger than
the routing computing capacity (Theorem III.8). We also show
that there exists a reducible target function and a network
whose computing capacity is strictly greater than its linear
computing capacity, which in turn is strictly greater than its

1



routing computing capacity. (Theorem III.10). Due to lack of
space, many of the proofs have been omitted. The interested
reader can find them in [4].

Semi−injective

Linear Injective

All target functions

Reducible

Fig. 1. Decomposition of the space of all target functions into various classes.

II. NETWORK MODEL AND DEFINITIONS

In this paper, anetwork N = (G,S, ρ) consists of a
finite, directed acyclic multigraphG = (V , E), a setS =
{σ1, . . . , σs} ⊆ V of s distinct source nodesand a single
receiverρ ∈ V . We assume thatρ /∈ S, and that the graphG
contains a directed path from every node inV to the receiver
ρ. For each nodeu ∈ V , let Ein(u) and Eout(u) denote the
in-edges and out-edges ofu respectively. We assume (without
loss of generality) that if a network node has no in-edges, then
it is a source node. Ife = (u, v) ∈ E , we will use the notation
head(e) = u and tail(e) = v.

An alphabetis a finite set of size at least two. Throughout
this paper,A will denote asource alphabetandB will denote
a receiver alphabet. For any positive integerm, any vector
x ∈ Am, and anyi ∈ {1, 2, . . . ,m}, let xi denote thei-
th component ofx. Sometimes we viewA as an algebraic
structure such as a ring, i.e., with multiplication and addition.
Throughout this paper, vectors will always be taken to be row
vectors. LetFq denote a finite field of orderq. A superscript
t will denote the transpose for vectors and matrices.

A. Target functions

For a given networkN = (G,S, ρ), we uses throughout
the paper to denote the number|S| of receivers inN . For
given networkN , a target functionis a mapping

f : As −→ B.

The goal in network computing is to computef at the receiver
ρ, as a function of the source messages. We will assume that
all target functions depend on all the network sources (i.e.a
target function cannot be a constant function of any one of its
arguments).

Definition II.1. Let alphabetA be a ring. A target function
f : As −→ B is said to bereducibleif there exists an integer
λ satisfyingλ < s, an s × λ matrix T with elements inA,
and a mapg : Aλ −→ B such that for allx ∈ As,

g(xT ) = f(x). (1)

B. Network computing and capacity

Let k andn be positive integers. Given a networkN with
source setS and alphabetA, a message generatoris any
mapping

α : S −→ Ak.

For each sourceσi ∈ S, α(σi) is called amessage vectorand
its components

α(σi)1 , . . . , α(σi)k

are calledmessages

Definition II.2. A (k, n) network code in a networkN con-
sists ofencoding functionsh(e), for every out-edgee ∈ Eout(v)
of every nodev ∈ V − ρ, and adecoding functionψ.

Furthermore, given a(k, n) network code, every edgee ∈ E
carries a vectorze of at mostn alphabet symbols1, which
is obtained by evaluating the encoding functionh(e) on the
set of vectors carried by the in-edges to the node and the
node’s message vector if the node is a source. The objective
of the receiver is to compute the target functionf of the source
messages, for any arbitrary message generatorα. More pre-
cisely, the receiver constructs a vector ofk alphabet symbols,
such that for eachi ∈ {1, 2, . . . , k}, the i-th component of
the receiver’s computed vector equals the value of the desired
target functionf , applied to thei-th components of the source
message vectors, for any choice of message generatorα.

Definition II.3. Suppose in a networkN , the in-edges of the
receiver aree1, e2, . . . , e|Ein(ρ)|. A (k, n) network code is said
to computef in N if for eachj ∈ {1, 2, . . . , k}, and for each
message generatorα, the decoding function satisfies

ψ
(

ze1 , · · · , ze|Ein(ρ)|

)

j
= f

(

(α(σ1)j , · · · , α(σs)j)
)

. (2)

If there exists a(k, n) code that computesf in N , then the
rational numberk/n is said to be anachievable computing
rate.

In the network coding literature, one definition of thecoding
capacityof a network is the supremum of all achievable coding
rates [5]. We use an analogous definition for the computing
capacity.

Definition II.4. Thecomputing capacityof a networkN with
respect to a target functionf is

Ccod(N , f) =

sup
n

k

n
: ∃ (k, n) network code that computesf in N

o

. (3)

The notion of linear codes in networks is most often studied
with respect to finite fields. Here we will sometimes use more
general ring structures.

Definition II.5. Let alphabetA be a ring. A(k, n) network
code in a networkN is said to be alinear network code (over
A) if the encoding functions are linear overA.

The linear computing capacityClin(N , f) and the rout-
ing computing capacityCrout(N , f) are defined similarly

1By default, we assume that edges carry exactlyn symbols.
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by restricting the encoding functions to be linear functions
(over A) and routing, respectively. We call the quantity
Ccod(N , f)−Clin(N , f) the computing capacity gainof using
nonlinear coding over linear coding. Similar “gains”, such
as,Ccod(N , f) − Crout(N , f) andClin(N , f) − Crout(N , f) are
defined.

III. L INEAR NETWORK CODES FOR COMPUTING TARGET

FUNCTIONS

It turns out that if intermediate network nodes are restricted
to use only routing, then a network’s receiver learns all the
source messages irrespective of the target function it demands.
In Section III-A, we prove a similar result when the intermedi-
ate nodes use linear network coding. It is shown that whenever
a target function is not reducible the linear computing capacity
coincides with the routing computing capacity and the receiver
must learn all the source messages. We also show that there
exists a network such that the computing capacity is larger than
the routing computing capacity whenever the target function
is non-injective. Hence, if the target function is not reducible,
such computing capacity gain must be obtained from nonlinear
coding. Section III-B shows that linear codes may provide
a computing capacity gain over routing for reducible target
functions and that linear codes may not suffice to obtain the
full computing capacity gain over routing.

A. Non-reducible target functions

Verifying whether or not a given target function is reducible
may not be easy. We now define a class of target functions
that are easily shown to not be reducible.

Definition III.1. A target functionf : As −→ B is said to be
semi-injectiveif there existsx ∈ As such thatf−1({f(x)}) =
{x}.

Example III.2. If f is the arithmetic sum target function, then
f is semi-injective (sincef(x) = 0 implies x = 0) but not
injective (sincef(0, 1) = f(1, 0) = 1). Other examples of
semi-injective target functions include the identity, maximum,
and minimum functions.

Lemma III.3. If alphabetA is a ring, then semi-injective
target functions are not reducible.

Theorem III.4 establishes for a network with a finite field
alphabet, whenever the target function is not reducible, linear
computing capacity is equal to the routing computing capacity,
and therefore if a linear network code is used, the receiver
ends up learning all the source messages even though it only
demands a function of these messages.

For network coding (i.e. whenf is the identity function),
many multi-receiver networks have a larger linear capacity
than their routing capacity. However, all single-receivernet-
works are known to achieve their coding capacity with routing
[19]. For network computing, the next theorem shows that with
non-reducible target functions there is no advantage to using
linear coding over routing.2

2As a reminder, “network” here refers to single-receiver networks in the
context of computing.

Theorem III.4. Let N be a network with target functionf :
As −→ B and alphabetA. If A is a finite field andf is not
reducible, orA is a ring with identity andf is semi-injective,
then

Clin(N , f) = Crout(N , f) .

v

σ1 σ2 σs−1 σs

ρ

Fig. 2. NetworkNs has sourcesσ1, σ2, . . . , σs, each connected to the relay
v by an edge andv is connected to the receiver by an edge.

Theorem III.4 showed that if a network’s target function is
not reducible (e.g. semi-injective target functions) thenthere
can be no computing capacity gain of using linear coding
over routing. The following theorem shows that if the target
function is injective, then there cannot even be any nonlinear
computing gain over routing.

Note that if the identity target function is used in Theo-
rem III.5, then the result states that there is no coding gain
over routing for ordinary network coding. This is consistent
since our stated assumption in Section II is that only single-
receiver networks are considered here (for some networks with
two or more receivers, it is well known that linear coding may
provide network coding gain over network routing).

Theorem III.5. If N is a network with an injective target
functionf , then

Ccod(N , f) = Crout(N , f) .

Proof: It follows from [19, Theorem 4.2] that for any
single-receiver networkN and the identity target function
f , we haveCcod(N , f) = Crout(N , f). This can be straight-
forwardly extended to injective target functions for network
computing.

Theorem III.4 showed that there cannot be linear computing
gain for networks whose target functions are not reducible,and
Theorem III.5 showed that the same is true for target functions
that are injective. However, Theorem III.7 will show via an
example network that nonlinear codes may provide a capacity
gain over linear codes if the target function is not injective.
This reveals a limitation of linear codes compared to nonlinear
ones for non-injective target functions that are not reducible.
For simplicity, in Theorem III.7 we only consider the case
when there are two or more sources. We need the following
lemma first.

Lemma III.6. The computing capacity of the networkNs

shown in Figure 2, with respect to a target functionf : As −→
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B, satisfies

Ccod(Ns, f) ≥ min

{

1,
1

log|A| |f (As)|

}

.

Theorem III.7. Let A be a finite field alphabet. Lets ≥ 2
and let f be a target function that is neither injective nor
reducible. Then there exists a networkN such that

Ccod(N , f) > Clin(N , f) .

Proof: If N is the networkNs shown in Figure 2 with
alphabetA, then

Clin(N , f) = 1/s [from Theorem III.4]

< min

{

1,
1

log|A| |f (As)|

}

[from s ≥ 2, |f (As)| < |A|s]

≤ Ccod(N , f) . [from Lemma III.6]

B. Reducible target functions

In Theorem III.8, we prove a converse to Theorem III.4 by
showing that if a target function is reducible, then there exists a
network in which the linear computing capacity is larger than
the routing computing capacity. Theorem III.10 shows that,
even if the target function is reducible, linear codes may not
achieve the full (nonlinear) computing capacity of a network.

Theorem III.8. Let A be a ring. If a target functionf :
As −→ B is reducible, then there exists a networkN such
that

Clin(N , f) > Crout(N , f) .

For target functions that are not reducible, any improve-
ment on achievable rate of computing using coding must be
provided by nonlinear codes (by Theorem III.4). However,
within the class of reducible target functions, it turns outthat
there are target functions for which linear codes are optimal
(i.e., capacity achieving), while for certain other reducible
target functions, nonlinear codes might provide a strictlylarger
achievable computing rate compared to linear codes.

Remark III.9. It is possible for a networkN to have a
reducible target functionf but satisfyClin(N , f) = Crout(N , f)
since the network topology may not allow coding to exploit
the structure of the target function to obtain a capacity gain.

Theorem III.7 shows that for every non-injective, non-
reducible target function, some network has a nonlinear com-
puting gain over linear coding, and Theorem III.8 shows
that for every reducible (hence non-injective) target function,
some network has a linear computing gain over routing.
The following theorem shows that for some reducible target
function, some network has both of these linear and nonlinear
computing gains.

Theorem III.10. There exists a networkN and a reducible
target functionf such that:

Ccod(N , f) > Clin(N , f) > Crout(N , f) .
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